skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carlson, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Trace element analyses of silicate materials by secondary ion mass spectrometry (SIMS) typically normalize the secondary ion count rate for the isotopes of interest to the count rate for one of the silicon isotopes. While the great majority of SIMS analyses use the signal from Si+, some laboratories have used a multiply charged ion (Si2+ or Si3+). We collected data and constructed calibration curves for lithium, beryllium, and boron using these different normalizing species on synthetic basaltic glass and soda-lime silicate glass standards. The calibrations showed little effect of changing matrix when Si+ was used, but larger effects (up to a factor of ~2) when using Si2+ or Si3+ are a warning that care must be taken to avoid inaccurate analyses. The smallest matrix effects were observed at maximum transmission compared to detecting ions with a few tens of eV of initial kinetic energy (“conventional energy filtering”). Normalizing the light element ion intensities to Al3+ showed a smaller matrix effect than multiply-charged Si ions. When normalized to 16O+ (which includes oxygen from the sample and from the primary beam), the two matrices showed distinct calibration curves, suggesting that changing sputter yields (atoms ejected per primary atom impact) may play a role in the probability of producing multiply charged silicon ions. 
    more » « less
  2. This paper presents a step-up DC-DC converter that uses a stepwise gate-drive technique to reduce the power FET gate-drive energy by 82%, allowing positive efficiency down to an input voltage of ±0.5 mV—the lowest input voltage ever achieved for a DC-DC converter as far as we know. Below ±0.5 mV the converter automatically hibernates, reducing quiescent power consumption to just 255 pW. The converter has an efficiency of 63% at ±1 mV and 84% at ±6 mV. The input impedance is programmable from 1 Ω to 600 Ω to achieve maximum power extraction. A novel delay line circuit controls the stepwise gatedrive timing, programmable input impedance, and hibernation behavior. Bipolar input voltage is supported by using a flyback converter topology with two secondary windings. A generated power good signal enables the load when the output voltage has charged above 2.7 V and disables when the output voltage has discharged below 2.5 V. The DC-DC converter was used in a thermoelectric energy harvesting system that effectively harvests energy from small indoor temperature fluctuations of less than 1°C. Also, an analytical model with unprecedented accuracy of the stepwise gate-drive energy is presented. 
    more » « less
  3. This work demonstrates a novel junction termination extension (JTE) with a graded charge profile for vertical GaN p-n diodes. The fabrication of this JTE obviates GaN etch and requires only a single-step implantation. A bi-layer photoresist is used to produce an ultra-small bevel angle (~0.1°) at the sidewall of a dielectric layer. This tapered dielectric layer is then used as the implantation mask to produce a graded charge profile in p-GaN. The fabricated GaN p-n diodes show a breakdown voltage ( BV ) of 1.7 kV (83% of the parallel-plane limit) with positive temperature coefficient, as well as a high avalanche current density over 1100 A/cm 2 at BV in the unclamped inductive switching test. This robust avalanche is ascribed to the migration of the major impact ionization location from the JTE edge to the main junction. This single-implant, efficient, avalanche-capable JTE can potentially become a building block of many vertical GaN devices, and its fabrication technique has wide device and material applicability. 
    more » « less
  4. null (Ed.)